🔬 Scientific Calculator

Advanced scientific calculator with intelligent expression parsing supporting trigonometric functions, logarithms, exponents, roots, and complex mathematical operations.

Enter mathematical expressions using functions like sqrt(), sin(), log(), etc. Examples: 2^3 (power), sqrt(25) (square root), sin(pi/2) (sine), log(100) (logarithm)
Choose angle measurement for trigonometric functions
Number of decimal places in results
Display step-by-step breakdown of the calculation

Calculation Results

🔬 Scientific Calculation

Expression: sqrt(25) + 2^3 - sin(pi/2)
Result: 12
Evaluated in radians mode with auto precision
Step-by-Step Calculation
1. sqrt(25) = 5
2. 2^3 = 8
3. sin(pi/2) = 1
4. 5 + 8 - 1 = 12
Function Analysis
Expression contains: square root, exponentiation, trigonometric function
All functions evaluated successfully

How to Use This Scientific Calculator

How to Use the Scientific Calculator:

  1. Enter mathematical expressions using standard notation
  2. Use functions like sin(), cos(), sqrt(), log(), abs()
  3. Include constants like pi and e in your calculations
  4. Click "Calculate" to evaluate your expression
  5. View detailed results with step-by-step breakdown
  6. Copy results or download calculation history

📚 Complete Function Reference

🔢 Basic Operations
  • + Addition: 5 + 3
  • - Subtraction: 10 - 4
  • * Multiplication: 6 * 7
  • / Division: 15 / 3
  • ^ or ** Power: 2^3 or 2**3
  • () Grouping: (2 + 3) * 4
🌍 Constants
  • pi π (3.14159...): 2 * pi
  • e Euler's number (2.71828...): e^2
📐 Trigonometry
  • sin(x) Sine: sin(pi/2)
  • cos(x) Cosine: cos(0)
  • tan(x) Tangent: tan(pi/4)
  • asin(x) Arc sine: asin(1)
  • acos(x) Arc cosine: acos(0)
  • atan(x) Arc tangent: atan(1)
📊 Logarithms
  • log(x) Base 10: log(100)
  • ln(x) Natural log: ln(e)
  • log10(x) Base 10: log10(1000)
  • log2(x) Base 2: log2(8)
🔲 Roots & Powers
  • sqrt(x) Square root: sqrt(25)
  • cbrt(x) Cube root: cbrt(27)
  • pow(x,y) Power: pow(2,3)
  • exp(x) e^x: exp(1)
🛠️ Utility Functions
  • abs(x) Absolute: abs(-5)
  • ceil(x) Round up: ceil(4.2)
  • floor(x) Round down: floor(4.8)
  • round(x) Round: round(4.5)
  • max(a,b) Maximum: max(5,8)
  • min(a,b) Minimum: min(5,8)
💡 Example Expressions
  • sqrt(25) + 2^3 → 13
  • sin(pi/2) * 10 → 10
  • log(100) + ln(e) → 3
  • (5 + 3) * sqrt(16) → 32
  • abs(-10) / 2 → 5
  • ceil(4.2) + floor(4.8) → 9
⚠️ Important Notes
  • Default angle mode is radians
  • Use parentheses for complex expressions
  • Functions require parentheses: sin(x) not sin x
  • Multiplication must be explicit: 2*pi not 2pi

💡 Pro Tips: Start with simple expressions and build complexity gradually. Use the step-by-step option to understand how your calculations are processed!

How It Works

Advanced Expression Parsing Engine:

Our calculator uses a sophisticated mathematical parser with scientific precision:

  1. Expression Parsing: Intelligently interprets mathematical notation and operator precedence
  2. Function Library: Supports trigonometric, logarithmic, exponential, and statistical functions
  3. Precision Computing: Uses high-precision arithmetic for accurate scientific calculations
  4. Error Handling: Provides clear feedback for invalid expressions or mathematical errors

Supported Functions:

  • Trigonometric: sin(), cos(), tan(), asin(), acos(), atan()
  • Logarithmic: log(), ln(), log10(), log2()
  • Power & Root: sqrt(), cbrt(), pow(), exp()
  • Utility: abs(), ceil(), floor(), round(), max(), min()

When You Might Need This

Frequently Asked Questions

How accurate are the scientific calculator results?

Our tool uses industry-standard mathematical algorithms and precision arithmetic to ensure high accuracy. Results are validated against known mathematical benchmarks and undergo continuous quality assurance to maintain reliability for scientific applications.

Can I use this tool for professional engineering work?

Yes, this tool is designed for professional use with enterprise-grade mathematical accuracy and reliability. It meets academic standards and provides the precision required for business-critical scientific calculation tasks in engineering and research.